Computing two dimensional cross fields - A PDE approach based on the Ginzburg-Landau theory

نویسندگان

  • Pierre-Alexandre Beaufort
  • Jonathan Lambrechts
  • François Henrotte
  • Christophe Geuzaine
  • Jean-François Remacle
چکیده

Cross fields are auxiliary in the generation of quadrangular meshes. A method to generate cross fields on surface manifolds is presented in this paper. Algebraic topology constraints on quadrangular meshes are first discussed. The duality between quadrangular meshes and cross fields is then outlined, and a generalization to cross fields of the Poincaré-Hopf theorem is proposed, which highlights some fundamental and important topological constraints on cross fields. A finite element formulation for the computation of cross fields is then presented, which is based on Ginzburg-Landau equations and makes use of edge-based Crouzeix-Raviart interpolation functions. It is first presented in the planar case, and then extended to a general surface manifold. Finally, application examples are solved and discussed. c © 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the organizing committee of IMR 26.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory

A generalization of vector fields, referred to as N -direction fields or cross fields when N = 4, has been recently introduced and studied for geometry processing, with applications in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation that cross field design for two-dimensional quad meshing is related to the well-known GinzburgLandau problem from mathe...

متن کامل

Dispersionless Toda Hierarchy and Two-dimensional String Theory

The dispersionless Toda hierarchy turns out to lie in the heart of a recently proposed Landau-Ginzburg formulation of two-dimensional string theory at self-dual compactification radius. The dynamics of massless tachyons with discrete momenta is shown to be encoded into the structure of a special solution of this integrable hierarchy. This solution is obtained by solving a Riemann-Hilbert proble...

متن کامل

Ginzburg-Landau vortex dynamics with pinning and strong applied currents

We study a mixed heat and Schrödinger Ginzburg-Landau evolution equation on a bounded two-dimensional domain with an electric current applied on the boundary and a pinning potential term. This is meant to model a superconductor subjected to an applied electric current and electromagnetic field and containing impurities. Such a current is expected to set the vortices in motion, while the pinning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.01344  شماره 

صفحات  -

تاریخ انتشار 2017